DEEP UNDERGROUND

NEUTRINO EXPERIMENT

Data structures for buffering

Roland Sipos for DUNE DAQ

DUNE DAQ/SC Meeting
7th June 2021

2 Y

U

Overview

Buffering
o Requirements and constraints
o Latency Buffer
Data structures
o Classification
o Few examples
Use-cases in the “readout” package
o WIB LB: lock-free ProducerConsumerQueue from Folly
o PDS LB: ConcurrentSkipList from Folly
Other potential use-cases
Outlook

\J—aﬁv

Buffering

TP Handling Domain : Raw Streaming .

Requested Data Domain

Buffering N f
A data buffer is a region of memory storage Covanre) | (oo (g (Senangon)
used to temporarily store data while it is being K3 e i3
moved from a source to a destination. @
Buffers are typically used when there is a s (] oo 2
difference between the rate at which data is received @ § § »\
and the rate at which it can be processed, or when : Can/ § ’ 3+ data
these rates are variable. 9 e types
Abuffer often adjust “timing” by implementinga & | L]
queue algorithm in memory, simultaneously writing) o 1,
data into the queue at one rate and reading it at another rate.

o E.g.: Burst write at given rate, then process & flush = s | | onor

at a different rate.

2
I

Latency Buffer & its access

e Latency Buffer (LB): A data structure implementation that temporarily stores the
raw data, and has certain attributes that ensures search-ability based on a lookup
criteria. A notable example for this, is the lookup based on a key, e.g.: timestamp

e Accessor entities:

o Data Receiver (entity) oot |
m Producer: moves data to LB (thread) ks B
m Responsible for monitoring | et &
m Initiates cleanup of old data | f
o Regquest Handler (entity) s .
m Potentially overlapping data requests (threads) o §
m Removes/cleans up old data (thread) Rawdata Bt @ —>(g
m Other special requests (threads) QQ :

Readout requirements for buffering

Far Detector Front-end (FE) types and their characteristics:
e WIB/WIB2: Fixed arrival rate of fix sized byte arrays (payloads)
e PDs: Variable arrival rate of fix sized byte arrays (payloads)
e TPs: Variable arrival rate of variable sized byte arrays (payloads)

Other constraints:
e Arriving payloads are pre-sorted on timestamp field

Provide a solution for:
e [ar Detector FE use cases, other use cases:
e Other use cases (e.g.: ND):
Variable arrival rate of variable sized payloads, but packets are not pre-sorted!

6 DUVE

We are looking for data structures...

... to buffer:

TPC data that are continuous in time and memory space

PDS data that are non-continuous in time, but it is in memory space
TPs that are continuous in time, but not in memory space

ND data that are non-continuous in time, neither in memory space, non
time-ordered arrival

True for all:
o Homogeneous (won’t mix with other FE types)
o Highly concurrent access (especially true for high-rate FEs -> TPC)

Data structures

From: https://medium.com/

(Ve

https://medium.com/

Data structures

In computer science, a data structure is a data organization, management, and
storage format that enabled efficient access and modification.

o More precisely: a data structure is a collection of data values, the
relationships among them, and the functions or operations that can be
applied to the data.

Why we need them?
o Index- and searchability: If the processing needs to find elements efficiently
o Concurrency: Multiple operations may happen in parallel

e Advantages:

o Efficiency: Choose right data structures for the right use-cases

o Reusability: Mature implementations exists in several different libraries

o Abstraction: Specified by ADT, but clients use fixed interfaces

2
Im

Data structure classification

Linear: All of the elements are
arranged in linear order. Elements
are stored in non-hierarchical way
where each element has a
successor and predecessor.
(Except first and last.)

Non-linear: Does not form a sequence.
Each element is connected with two

or more other items in a non-linear
arrangement.

(Elements are not arranged in sequential structure.)

From: https://bcastudyguide.wordpress.com/unit-1-introduction-to-data-structure-and-its-characteristics

Data Structure

Non-Primitive

| | l
ﬁﬂﬂiﬁ | Tree Graph
! , l

Array

Linked List

Stack

/

10

https://bcastudyguide.wordpress.com/unit-1-introduction-to-data-structure-and-its-characteristics/

Data structure examples

Array: Collection of homogeneous elements
that are contiguously arranged

Data Structure

(mutable but static: the size cannot be changed)

List: Collection of homogeneous/heterogeneous

elements stored at non-contiguous locations.
Each node of the list points to its adjacent
node.

'Non-Primitive
Nata Structure

Queue: Linear list in which elements can

| | l
ﬁﬂiﬁi 2 | Tree Graph
/%\
Array (Linked List) Stack é Queue }

be inserted only at the “end” and deleted
only at the “front”. (FIFO)

Stack: Similar to queue, but only “open” at one end

(top of the stack). (LIFO)

v

N\

The talk focuses on these.

11

Concurrent access

The term non-blocking denotes concurrent data structures, which do not use traditional
synchronization primitives like guards to ensure thread-safety.

The 3 main types of non-blocking data structures:
e Wait-free, if every concurrent operation is guaranteed to be finished in a finite
number of steps
e Lock-free, if some concurrent operations are guaranteed to be finished in a finite
number of steps
e Obstruction-free, if a concurrent operation is guaranteed to be finished in a finite
number of steps, unless another concurrent operation interferes

Some data structures can only be implemented in a lock-free manner, if they are used
under certain restrictions.

From Boost.Lockfree: https://www.boost.ora/doc/libs/master/doc/html/lockfree.html

12 DAXVE

https://www.boost.org/doc/libs/master/doc/html/lockfree.html

Implementations

e Custom/homebrew
e Boost
o Lockfree: ::queue, ::stack, ::spsc_queue
e TBB & oneAPI
o Concurrent: ::hash_map, ::Iru_cache, ::map, ::queue, :.vector, etc...
o Internal concurrent_skip list
() FOIly L (The appfwk uses these for inter module communication.)
o Queues: SPSC, MPMC (with optional blocking)
o LockFreeRingBuffer
o ConcurrentSkipList

(Details on the unified C++ memory model can be found under the cppreference.)

13 DUVE

https://en.cppreference.com/w/cpp/language/memory_model

Data structure implementations:

14

Considerations for LBs

Custom/homebrew °
Boost.Lockfree

Folly:
Queues: SPSC, MPMC

LockFreeRingBuffer _ °
ConcurrentSkipList

TBB & oneAPI: Concurrent DSs o
Internal _concurrent_skip_list

Data to buffer:

TPC data: continuous in time and
memory space. (high rate)

PDS data: non-continuous in time, but it
is in memory space. (moderate rate)

TPs: continuous in time, but not in
memory space. (low rate)

ND data: non-continuous in time,
neither in memory space, non
time-ordered arrival. (low rate)

2
I

Data structures for LBs

Subchunk Chunk
Pointers Messages

— C—
p —
— =} —a——E = <]
=—)?:

— —)
—G—
Pavaey [C—

Plryscal cand &L+ ooo|—anoanaa0—|—— = —Ge——] <
» — =
T

15 DR VE

I
* @brief SuperChunk concept: The FELIX user payloads are called CHUNKs.

Pa Ioad Stru Ctu reS * There is mechanism in firmware to aggregate WIB frames to a user payload
* that is called a SuperChunk. Default mode is with 12 frames:

* 12[wWIB frames] x 464[Bytes] = 5568[Bytes]

*/

const constexpr std::size_t WIB_SUPERCHUNK_SIZE = 5568; // for 12: 5568

struct WIB_SUPERCHUNK_STRUCT

FE payload be conti | d

ayloads can pe conuguously arranged. *'// .
char data[WIB_SUPERCHUNK_SIZE];
// comparable based on first timestamp

PY FIX SIZG can be Stored ContanOUSIy bool operator<(const WIB_SUPERCHUNK_STRUCT& other) const

{

O FiX rate: key Can translate to position i auto thisptr = reinterpret_cast<const dunedaq::dataformats::WIBHeader*>(&data);

auto otherptr = reinterpret_cast<const dunedaq::dataformats::WIBHeader*>(&other.data);

O Var‘ rate: needs “find”/”search” return thisptr->get_timestamp() < otherptr->get_timestamp() ? true : false;

o FE payloads are sortable :

J**
* @brief Convencience wrapper to take ownership over char pointers with

* corresponding allocated memory size.

e Var size: elements are stored non-continuously o D
o Fix rate: needs “insert” T

VariableSizePayloadwWrapper() {3}

O Var rate: needS “insert” and “find,,/’,searCh” VariableSizePayloadWrapper(size_t size, char* data)

: size(size)

o FE types can implement own , datadata)
. 18
sortable wrappers with overloaded operator

size_t size = 0O;

std::unique_ptr<char> data = nullptr;

16 DAXVE

17

TPC data buffering with SPSC queue

Used in production at ProtoDUNE-SP =y s
Trigger timestamp can be translated i e T
to element position/index in the queue ™ ——— A
Modifications for DUNE in readout:

o AccessableSPSC (readPtr function) s -

o At certain occupancy threshold,
a “data-cleanup” is requested
o RequestHandler executes requests:
m ClassA - data request
m ClassB - cleanup request
o A safe margin in form of extra payloads is
needed to buffer an extra few seconds

N

// pointer to xth element starting from the front pointer (for use in-place)
// nullpr if empty
* readPtr(size t index)

auto const currentRead =
if (currentRead ==
return nullptr;

readIndex .load(std::memory order relaxed);
writeIndex .load(std::memory order acquire)) {

auto recordIdx = currentRead + index;
if (recordIdx >= size) {
recordIdx -= size ;
if (recordIdx > size) { // don't stomp out
return nullptr;
}
}

return &records_[recordIdx];

https://github.com/DUNE-DAQ/readout

18

PDS data buffering

Problem: time-gaps in contiquously arranged elements:

N Readoutwindow g

| | 1)
Start Trigger Stop Time
B i e L E P PP
Buffer capacity

Since v2.6 there are two implementations for the PDS LB and their
corresponding request handling solutions:
o SPSC based, with LB extension to ensure searchability in the buffer
o SkipList based, with “find”/"search” functionality

2

m

Courtesy of Elorian Till Groetschla

PDS data buffering with SPSC queue

Readout window

" ofiset g
| i >y |
I13 1} 13 11})
e |Introduce “Key” and “KeyGetter templ_ate | i e
Parameters to the SPSC as an extension:
SearchableProducerConsumerQueue
e Implement a binary search algorithm in the R
function of the new queue with signature: | .., coer ror oo
T* f|nd_e|ement(Key& key) { } stru:t PDSTimestampGetter
{
uint64_t operator()(PDS_SUPERCHUNK_STRUCT& pdss) // NOLINT(build/unsigned)
‘ FE typeS need tO implement Corresponding {auto pdsfptr = reinterpret_cast<dunedaq::dataformats: :PDSFrame*>(&pdss);
KeyGetter funCtion ObJeCtS _/» : return pdsfptr->get_timestamp();
§
e RequestHandler uses Trigger TS as key for the find _element function.
DUNVE

19

https://github.com/floriangroetschla

SkipList

The SkipList is a probabilistic, ordered data structure providing O(log(n))
lookup, insertion and deletion complexity at average.

It has the best features of a sorted array (for searching), while maintaining a linked-list
structure that allows insertion (that the array does not have).

Fast search is achieved by maintaining a linked hierarchy of subsequences, with each
successive subsequence skipping over fewer elements than the previous one.

The subsequences support binary searching L]« T30 —
by starting at the highest subsequence and MENE: = NIl
working towards the bottom, using the links el [30 50 -0 NIL
to check when one should move forward in P v O e R R = . ey O e O

the list or down to a lower subsequence.
From Wikipedia: https://en.wikipedia.org/wiki/Skip_list

Du(VE

https://en.wikipedia.org/wiki/Skip_list

Data Structure Time Complexity Space Complexity
Average Worst Worst
n - Access Search Insertion Deletion Access Search Insertion Deletion
S kl D L I St & B Tre e Skip List [6(og(n))] [eCtog(m)) [6(Toa())] (6T tog(m)]
! Hash Table WA EE EE EE A
Binary Search Tree [B(1og(n))] [6(Tog(n))] [6(Toa(n))] [E(Tog(n))]
Cartesian Tree [N/A| [B(Tog(n))][6(Tog(n))] [6(Tog(n))] [N/A
B-Tree [6(tog(n))][e(Tog(n))][e(Log(n))][(tog(n))][0(Tog(n))][O(Log(n))][0(Tog(n))]|[0(Log(n))] 0(n)

It provides it without the need for tree balancing, page splitting, etc., that are
required for BTrees.

~ 20 years younger invention than the BTree. (1990 vs 1970s)

BTrees made a lot of sense for databases when the data lived most of its life
on disk and was moved to memory and cached for running queries on them
o BTrees do lot of extra work to reduce disk I/O, which is needless
overhead if our data fits in memory. (Which is true for the LBs.)

2
Im

https://link.springer.com/chapter/10.1007%2F3-540-51542-9_36
https://infolab.usc.edu/csci585/Spring2010/den_ar/indexing.pdf

ConcurrentSkipList from Folly

The folly::ConcurrentSkipList implements A Provably Correct Scalable Concurrent Skip List.

Good high contention performance

Small memory overhead. (~40% less, compared with std::set)

Read accesses are lock-free and mostly wait-free. Write access require locks,
but these are local to the predecessor and/or successor nodes.

Lazy remove with GC support. Removed nodes are deleted when the last
“accessor’ is destroyed.

Can be 10x slower than std::set when the list is small (<1000 elements)

Write operations are ~30% slower in single-threaded env compared to std::set

22

(Ve

https://github.com/facebook/folly/blob/master/folly/ConcurrentSkipList.h
https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.pdf

Creating ratelimiter with 10 KHz...

Spawned adjuster thread...

Adjusting rate to: 72.0525 [kHz]

SkipList Producer spawned... Creating accessor
SkipList Cleaner spawned... Creating accessor

" - Cleaner: SkipList size: 0
SkipList TriggerMatcher spawned...
Application will terminate in 5s...
Flipping killswitch in order to stop threads...

Cleaner: Didn't manage to get SKL head and tail!

TriggerMatcher: Found element lower bound to 91125 in skiplist with timestamp --> 91125
TriggerMatcher: Found element lower bound to 181362 in skiplist with timestamp --> 181375
TriggerMatcher: Found element lower bound to 271625 in skiplist with timestamp --> 271625
TriggerMatcher: Found element lower bound to 361887 in skiplist with timestamp --> 361900
Cleaner: SkiplList size: 36124

TriggerMatcher: Found element lower bound to 448862 in skiplist with timestamp 448875
. Cleaner: Cleared 39764 elements
. Varlable rate (1 0_1 OO kHZ) producer Of TriggerMatcher: Found element lower bound 542275 in skiplist with timestamp 994125
TriggerMatcher: Found element lower bound to 632600 in skiplist with timestamp 994125
TriggerMatcher: Found element lower bound to 722900 in skiplist with timestamp 994125
- - TriggerMatcher: Found element lower bound 813200 in skiplist with timestamp 994125
5568 Bytes payloads with timestamp Adjusting rate o 55.5635 (ki)
] TriggerMatcher: Found element lower bound 904112 in skiplist with timestamp 994125
. “ ” 1 TriggerMatcher: Found element lower bound 1003725 in skiplist with timestamp 1003725
] TriggerMatcher: Found element lower bound 1128975 in skiplist with timestamp 1128975
increments (we always “push back”).
TriggerMatcher: Found element lower bound 1254187 in skiplist with timestamp 1254200
Cleaner: Unsuccessfull remove: 0
TriggerMatcher: Found element lower bound 1379337 in skiplist with timestamp 2758675
TriggerMatcher: Found element lower bound 1504087 in skiplist with timestamp 3008175
Cleaner: Cleared 89669 elements
- TriggerMatcher: Found element lower bound 1628987 in skiplist with timestamp 3235850
. earcher th read IOOkS Or an elel I lent Wlth TriggerMatcher: Found element lower bound 1753762 in skiplist with timestamp 3235850

TriggerMatcher: Found element lower bound 1878987 in skiplist with timestamp 3235850
TriggerMatcher: Found element lower bound 2003600 in skiplist with timestamp EPELEEL)

given timestamp at 10 Hz. I TR e e e s T (e T

Cleaner: SkipList size: 46641

TriggerMatcher: Found element lower bound 2137125 in skiplist with timestamp 3235850
Cleaner: Cleared 50237 elements
TriggerMatcher: Found element lower bound 2292487 skiplist with timestamp 4491775
TriggerMatcher: Found element lower bound 2375712 in skiplist with timestamp 4491775
H H TriggerMatcher: Found element lower bound 2458937 in skiplist with timestamp 4491775
. eaner t rea perlo ICa y every Secon TriggerMatcher: Found element lower bound 2542162 in skiplist with timestamp 4491775
TriggerMatcher: Found element lower bound 2625475 in skiplist with timestamp 4491775

. . TriggerMatcher: Found element lower bound 2708612 skiplist with timestamp 4491775
|OOkS at tall and head tlmestamps If the TriggerMatcher: Found element lower bound 2791862 skiplist with timestamp 4491775
. TriggerMatcher: Found element lower bound 2875037 skiplist with timestamp 4491775
Cleaner: SkipList size: 52413
] Cleaner: Cleared 55268 elements

timestamp distance exceeds a duration,

TriggerMatcher: Found element lower bound skiplist timestamp
. . R TriggerMatcher: Found element lower bound 2995000 skiplist with timestamp 5873475
TriggerMatcher: Found element lower bound 3034687 skiplist with timestamp 5873475
elel I Ients th at are Outslde a tll I le du ratlon TriggerMatcher: Found element lower bound 3074337 skiplist with timestamp 5873475
’ TriggerMatcher: Found element lower bound 3114000 skiplist with timestamp 5873475
TriggerMatcher: Found element lower bound 3153512 skiplist with timestamp 5873475

are removed Cleaner: SkipList size: 17879
.] Cleaner: Cleared 18195 elements

] TriggerMatcher: Found element lower bound 3179462 skiplist with timestamp 6328350
] TriggerMatcher: Found element lower bound 3219100 skiplist with timestamp 6328350
] TriggerMatcher: Found element lower bound 3258775 skiplist with timestamp 6328350

24

PDS data buffering with CSKL

e Introduce “less” operator for the FE payload structures.

e Add SkipListLatencyBufferModel with:

O

©)

“Insert” that moves new elements into the list.
“Read” that returns lower_bound element (i.e.: closest timestamp)

e Implement PDSRequestHandler that need special access to the SkipList.

©)

Override data request function with using Accessors to iterate and
collect elements that are included in the trigger window.

Override cleanup request function that removes elements that are out of
bound from a time-duration (e.g.: last 2 seconds based on newest
timestamp)

25

Other potential use-cases

e Near Detector FE types
o Variable rate and variable size -> linked list fits well
o No guarantee of time-ordered payload arrival -> needs sorting on insertion

e FEvent Building
o Sorting on insert operations
o Composite keys make the SkipList a powerhouse

26

Outlook

e Investigate RingBuffer (potentially eliminates the need for “cleanup”)

e Investigate “smart” data structures. l.e.: add functionality on top of original
implementations (Like the SearchableSPSC.)

e Performance evaluation of different implementations used for different use-cases

27

End

Thank you for your attention!

